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Transient Stability Enhancement using 
Coordinated DMPC for Power System 

S. Kulkarni 
 

Abstract— Present paper proposes a solution  in the form of a Distributed Model Predictive Control (DMPC)  strategy for excitation control 
in large scale networked applications, such as Multi-machine Power Systems (MMPS).  Each  MPC solves its own optimization problem 
using local decomposed model of the overall system, as it is more convenient to design control laws in distributed manner, based on only 
local measurements and reduced order dynamical model of the system.  The coordination amongst these controllers is achieved through 
information exchange to obtain performance close to that of centralized MPC scheme. The effectiveness of the proposed DMPC is tested 
on a 3rd order model of 2-machine system with lossy transmission lines and loads. 

Index Terms— Centralized control, Decentralized control, Distributed MPC, Excitation control,  Multi-machine power system, Optimization 
, Transient Stability 

——————————      —————————— 

1 INTRODUCTION                                                                     

Control strategies are generally implemented depend-
ing  upon dimension, complexity, and nature of the system. 
The  centralized approach is based on the assumption that 
a  powerful central station is available to control a group  of 
systems and that each subsystem of the system has ability 
to communicate to a central location or share information 
via a fully connected network [1], [2].  The most natural 
and in some cases the only  methodology for control of sys-
tems that are governed by constrained dynamics is MPC. 
For large systems, with a  large  number  of  inputs and out-
puts,  synthesis and implementation of a  centralized control-
ler is not feasible in practice because the  communication and 
computation costs increase with the size  of the system.  As a 
result, the centralized scheme does not scale well with the 
number of subsystems. Also  real-world  communication to-
pologies are usually not fully connected.  For such systems the 
decentralized or distributed controller strategies may be effec-
tively used. 

To match the ever increasing power demand, Multi-
Machine Power Systems (MMPS) with strong interconnec-
tions among various parameters, came into existence.  For 
such  a  highly complex, and  nonlinear system  centralized 
controllers were found inadequate which resulted into the 
need for decentralized and distributed controllers.  In [1], a 
DMPC framework for automatic generation control is de-
veloped for large networked systems, such as power sys-
tem, with strong interactions amongst the subsystems. An 
iterative Jacobi algorithm for solving DMPC problems with 
linear coupled dynamics and convex coupled constraints is 
addressed in [3].  

The authors have proved that the DMPC solution final-
ly converges to the centralized one for a problem involving 
coupled oscillators. While applying DMPC for load-
frequency control in a two-area power system, it was found 
that a compromise between improvement in performance 
and prediction errors could be achieved using DMPC ra-
ther than centralized MPC [5]. 

Due to the economic and infrastructure limitations, the 
existing power systems are stressed.  Small disturbances 
are taken care of by the restoring torques, maintaining sta-
bility of the system. However, severe disturbances such as 
a 3-phase   short circuit fault, may lead to cascade failure if 
the fault is not cleared before Critical Clearing Time (CCT).   
Transient   stability thus being a major issue of concern, 
various methods  are developed for its prediction, analysis 
and improvment.  Methods such as Time Domain Simula-
tions (TDS), Extended Equal Area Criterion (EEAC), direct 
methods using energy functions [6], Lyapunov methods, 
optimization methods  are  applied  for transient stability 
analysis and improvement  in MMPS. Although TDS [7] 
method works well irrespective  of model used, it is ex-
tremely time-consuming making  it unsuitable in real time. 
Finding Lyapunov function becomes extremely tedious 
when transmission line conductances are  non-negligible.  

In view of all this, the present paper proposes a DMPC 
strategy for excitation control of MMPS to improve transi-
ent stability. The distributed controller ensures fast control 
law generation due to the fact that each MPC needs to 
solve an optimization problem for a reduced order model 
as against a centralized controller. As a severe fault on a 
power system may result in complete blackout of the net-
work in just a few milliseconds, a computation time and 
computation burden are most important in transient stabil-
ity control and enhancement. 
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In a large interconnected power network, machines lo-
cated at one point in a system are in unison,  which can be 
considered as an equivalent large machine. Moreover, ma-
chines which are connected through a low reactance lines 
can be lumped together thereby reducing MMPS to a few 
machine system.  Thus, the behaviour of a large power sys-
tem can be thought of as extended version of a two ma-
chine system. 
The paper is organized as follows: Section II describes a 
general MPC formulation along with different models of 
distributed MPC for large networked systems. An algo-
rithm to solve optimization problem for distributed MPC  
is also formulated in Section II. A flux-decay  model of 2-
generator, 6-bus representative system is discussed in Sec-
tion III, following simulation results supported by Matlab 
simulations  in Section IV and conclusions in Section V. 

2   MPC FORMULATION 

A general MPC algorithm [2], [4] is described as: 
 
1) Using the knowledge of past control inputs, past and 
present outputs and using the explicit model of the system, 
an optimization problem is solved to calculate the values of 
the manipulated variables, u, for the  Nc  sampling instants 
i.e. u(k), u(k + 1),…,u(k + Nc - 1), where, Nc  is a control 
horizon. Predicted deviations from reference trajectory are 
computed over Np sampling  instants while satisfying con-
straints on control variables as well as on state variables. 
 
2) The first control move u(k) is implemented. 
 
3) At the next sampling instant, k + 1, control inputs are 
recalculated for next Nc  instants  i.e  from (k +1)  to               
( k + Nc-1) and first control move u(k + 1) is implemented. 
 
4) Steps 1) and 2) are repeated for subsequent sampling  
instants. 

 
Fig 1. Centralized Controller 

 

 
Fig. 2: Decentralized MPC 

 

 
Fig. 3: Distributed MPC 

 
In a decentralized  approach, each subsystem is controlled 
independently  and  the controllers do not communicate with 
each other.  In  distributed control strategy subsystems as well 
as controllers communicate with each other. Distributed con-
trol designs are preferable, since they provide scalability, and 
reduce computational burden. They are natural realizations   
of the limitations in communication,  networking, and sensing 
capabilities which are inherent in large scale systems. Differ-
ent control strategies are: 
. 
2.1 Distributed MPC 
Distributed MPC relies on decomposing the overall system 
model into appropriate subsystem models [1]. In distributed 
systems the resulting subsystems may have physical depend-
encies amongst them and therefore communication among 
them. One of the main problems of distributed control of large   
systems is to decide how those dependence relations between 
subsystems are preserved. The distributed approach allows 
for the distribution of decision making, subsystem reconfigu-
ration with local coordination, and communications only be-
tween neighbouring agents. 

2.2 Communication based MPC 
Each communication based MPC utilizes the objective  func-
tion for that subsystem only.  For each subsystem 𝑖,  at each 
iteration 𝑝,  only the input sequence of that subsystem 𝑢𝑝 is 
optimized and updated. The inputs of other subsystems re-
main at  𝑢𝑝−1. In the communication based MPC framework, 
each MPC of a subsystem has no information about  the objec-
tives of the MPCs of other  interconnected subsystems. 

2.3 Cooperation based MPC 
To arrive at a reliable distributed MPC framework, it is re-
quired  to ensure that the MPCs of subsystems cooperate, ra-
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ther than compete with each other in achieving system-wide 
objectives. In large-scale implementations, the sampling inter-
val may be insufficient to allow convergence of an  iterative, 
cooperation based algorithm. In such cases, the  cooperation 
based algorithm has to be terminated prior to  convergence of 
exchanged trajectories. For both communication and coopera-
tion based MPC, several subsystem  optimizations and ex-
change of variables between subsystems are performed during 
a sample time. A Partitioned Model (PM) combines the effect 
of local subsystem variables and effect of states of the inter-
connected subsystems [1]. The PM is obtained by considering 
the relevant partition of the  centralized model and can be 
written as [2]: 

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) + 𝐵𝑖𝑖𝑢𝑖(𝑘)�(𝐴𝑖𝑗𝑥𝑗(𝑘) + 𝐵𝑖𝑗𝑢𝑗(𝑘))
𝑗≠𝑖

 (1) 

 
For the jth agent, information from other agents is obtained as: 
[2] 
 𝑣𝑗(𝑘 + 𝑖|𝑘) = [𝑥1𝑇(𝑘 + 1|𝑘 − 1). . 𝑥𝑗−1𝑇 (𝑘 + 1|𝑘 − 1)P

  

𝑥𝑗+1𝑇 (𝑘 + 1|𝑘 − 1) …𝑥𝑀𝑇 (𝑘 + 1|𝑘 − 1)] 𝑇 

 
 

(2) 
    
The objective in the present work is to achieve coordination 
mong subsystems that solve MPC problems with locally rele-
vant variables, costs, and constraints, instead of solving a cen-
tralized MPC problem. Such a coordination scheme is effective 
when the local optimization problem is much smaller than a 
centralized problem, as in network control applications where 
the number of local states and control variables for each sub-
system and the number of variables shared with other subsys-
tems, are a small fraction of the total number of variables in 
the overall system. This means that the properties of the 
equivalent centralized MPC problem (e.g. stability) are en-
joyed by the solution obtained using the coordinated distrib-
uted MPC implementation. In order to achieve this an analytic 
expression of the predicted states,    𝑥1,𝑥2, …𝑥𝑁 is obtained in 
terms of present state, 𝑥0 , control inputs 𝑢0,𝑢1, …𝑢𝑁−1 and 
states of other subsystems communicated at previous sam-
pling instant. 
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(3) 

 
In a compact form (3) becomes: 
 

 𝑋𝑖 = 𝑆𝑥𝑥0 + 𝑆𝑢𝑈0 + 𝑆2𝑋𝑖 (4) 
 
Then the objective function for DMPC is written as: 
 

𝐽0(𝑥0,𝑈0) = 𝑈0𝑇[𝑆𝑢𝑇𝑄𝑆𝑢 + 𝑅]𝑈0 + 𝑥0𝑇[𝑆𝑥𝑇𝑄𝑆𝑥]𝑥0 
+𝑥𝑗𝑇[𝑆2𝑇𝑄𝑆2]𝑋𝑗 + 2[𝑥0𝑇𝑆𝑥𝑇 + 𝑋𝑗𝑇 + 𝑋𝑗𝑇𝑆2𝑇]𝑄𝑆𝑢𝑈0 

(5) 

 
The stepwise procedure for DMPC is summarised as follows: 
Step 1: Send previous predictions of a  controller of a particu-
lar subsystem, to other controllers and also receive infor-
mation from other controllers which includes predictions at 
the current and future instants in a prediction horizon. 
Step 2: Solve the optimal control problem  
subject to: 
𝑥𝑖(𝑘 + 𝑖 + 1) = 𝐴𝑖𝑖𝑥𝑖(𝑘 + 𝑖|𝑘) + 𝐵𝑖𝑢𝑖(𝑘 + 𝑖|𝑘) 

+𝐾𝑖𝑣𝑖(𝑘 + 𝑖|𝑘) 𝑓𝑜𝑟  𝑖 = 0,1, … ,𝑁 − 1 
 (6) 

Step 3: Apply the first element 𝑢(𝑘) of the control vector 𝑈(𝑘). 
Set 𝑘 = 𝑘 + 1 and repeat the algorithm at next sampling in-
stant. Thus each MPC deals with a reduced order model with 
a feq variables. The control law generation becomes faster and 
more accurate in large networked systems. 

3 DYNAMIC MODEL OF 2-MACHINE SYSTEM 
The  algorithm described in Section 2 is applied  to a 2-
machine, 6-bus  system is shown in Fig. 4.   
The system is assumed to have stable equilibrium at [𝛿𝑖⋆, 0,𝐸𝑖⋆]  
with 𝐸𝑖∗ > 0, |𝛿𝑖⋆ − 𝛿𝑗∗|  is small, and transfer conductances are 
small.  

Fig. 4. 2-generator, 6-bus  system 
 
The system is represented by 3rd order flux decay model [6] as 
follows: 
 
 �̇�𝑖 = 𝜔𝑖 (7) 
 
                   
�̇�𝑖 = −𝐷𝑖𝜔𝑖 + 𝑃𝑖 − 𝐺𝑖𝑖𝐸𝑖2  

−𝐸𝑖�𝑌𝑖𝑗𝐸𝑗 sin(𝛿𝑖 − 𝛿𝑗 + 𝛼𝑖𝑗)
𝑛

𝑗=1,
𝑗≠𝑖

 

(8) 
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�̇�𝑖 = −𝑎𝑖𝐸𝑖 + 𝑏𝑖�𝐸𝑗 cos(𝛿𝑖 − 𝛿𝑗 + 𝛼𝑖𝑗) + 𝐸𝑓𝑖 + 𝑢𝑖 

𝑛

𝑗=1,
𝑗≠𝑖

 
(9) 

Where,  
 
 

𝑌𝑖𝑗 ≜  �𝐺𝑖𝑗2 + 𝐵𝑖𝑗2 ) (10) 

 
 

∝𝑖𝑗≜ tan−1
𝐺𝑖𝑗
𝐵𝑖𝑗

   
(11) 

  

 
 

 
 

4 SIMULATION RESULTS AND ANALYSIS 
To implement the DMPC algorithm, a 2-generator, 6-bus 
system with lossy transmission lines represented by classi-
cal flux-decay model shown in Fig.5 is considered. The sys-
tem being over stressed, is highly susceptible to a fault and 
its critical clearing time is almost zero. A three phase short 
circuit fault occurs on a power system at t =2 sec. 
It is observed that DMPC designed stabilizes the system  
effectively. Variation of rotor angle delta and angular fre-
quencies for the two generators are as shown in Fig. 5 and 
Fig. 6 respectively. The excitation voltages and correspond-
ing control inputs are as depicted in Fig. 7 and Fig. 8 re 
spectively. 
 

 
 

Fig.  5. Variation of rotor angle delta using DMPC 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  6. Angular grequencies in 2-generator system 
 
 
 
 
 
 
 

  𝑎𝑖 ≜  
1
𝑇𝑑𝑖

(1 −𝐵𝑀𝑖𝑖(𝑥𝑑𝑖 − 𝑥𝑑𝑖′ ) 
(12) 

𝑏𝑖 ≜  
(𝑥𝑑𝑖 − 𝑥𝑑𝑖′ )

𝑇𝑑𝑖
𝑌𝑖𝑗 

(13) 
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Fig, 7. Exciter voltages 
 
 
 
 
 

 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
        

 
Fig. 8. Control inputs 

 
 
 
 
 
 
 

 
 

5 CONCLUSIONS 
The major limitation of centralized MPC application in 
large power system network is because of complexity and 
computation burden, which increases with the sizeof sys-
tem and lengths of prediction and control horizon, Np and 
Nc respectively. The computation burden may result in 
large computation time making it unsuitable for real-time 
application. This limitation of centralized MPC is overcome 
with the help of DMPC, in which the complete network is 
controlled in the form of controllers taking care of their 
local subsystems. The controllers may exchange and com-
municate system as well as control information to remain 
in synchronism with eachother which is one of the essential 
criteria of power system stability. The 2-machine case study 
has been carried out to verify the proposed DMPC which 
has confirmed the effective use of DMPC for a large system 
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